skip to main content


Search for: All records

Creators/Authors contains: "Sheng, Victor S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With inputs from human crowds, usually through the Internet, crowdsourcing has become a promising methodology in AI and machine learning for applications that require human knowledge. Researchers have recently proposed interval-valued labels (IVLs), instead of commonly used binary-valued ones, to manage uncertainty in crowdsourcing [19]. However, that work has not yet taken the crowd worker’s reliability into consideration. Crowd workers usually come with various social and economic backgrounds, and have different levels of reliability. To further improve the overall quality of crowdsourcing with IVLs, this work presents practical methods that quantitatively estimate worker’s reliability in terms of his/her correctness, confidence, stability, and predictability from his/her IVLs. With worker’s reliability, this paper proposes two learning schemes: weighted interval majority voting (WIMV) and weighted preferred matching probability (WPMP). Computational experiments on sample datasets demonstrate that both WIMV and WPMP can significantly improve learning results in terms of higher precision, accuracy, and F1-score than other methods. 
    more » « less
  2. Abstract—Summarization of long sequences into a concise statement is a core problem in natural language processing, which requires a non-trivial understanding of the weakly structured text. Therefore, integrating crowdsourced multiple users’ comments into a concise summary is even harder because (1) it requires transferring the weakly structured comments to structured knowledge. Besides, (2) the users comments are informal and noisy. In order to capture the long-distance relationships in staggered long sentences, we propose a neural multi-comment summarization (MCS) system that incorporates the sentence relationships via graph heuristics that utilize relation knowledge graphs, i.e., sentence relation graphs (SRG) and approximate discourse graphs (ADG). Motivated by the promising results of gated graph neural networks (GG-NNs) on highly structured data, we develop a GG-NNs with sequence encoder that incorporates SRG or ADG in order to capture the sentence relationships. Specifically, we employ the GG-NNs on both relation knowledge graphs, with the sentence embeddings as the input node features and the graph heuristics as the edges’ weights. Through multiple layerwise propagations, the GG-NNs generate the salience for each sentence from high-level hidden sentence features. Consequently, we use a greedy heuristic to extract salient users’ comments while avoiding the noise in comments. The experimental results show that the proposed MCS improves the summarization performance both quantitatively and qualitatively. 
    more » « less
  3. For decades, research in natural language processing (NLP) has focused on summarization. Sequence-to-sequence models for abstractive summarization have been studied extensively, yet generated summaries commonly suffer from fabricated content, and are often found to be near-extractive. We argue that, to address these issues, summarizers need to acquire the co-references that form multiple types of relations over input sentences, e.g., 1-to-N, N-to-1, and N-to-N relations, since the structured knowledge for text usually appears on these relations. By allowing the decoder to pay different attention to the input sentences for the same entity at different generation states, the structured graph representations generate more informative summaries. In this paper, we propose a hierarchical graph attention networks (HGATs) for abstractive summarization with a topicsensitive PageRank augmented graph. Specifically, we utilize dual decoders, a sequential sentence decoder, and a graph-structured decoder (which are built hierarchically) to maintain the global context and local characteristics of entities, complementing each other. We further design a greedy heuristic to extract salient users’ comments while avoiding redundancy to drive a model to better capture entity interactions. Our experimental results show that our models produce significantly higher ROUGE scores than variants without graph-based attention on both SSECIF and CNN/Daily Mail (CNN/DM) datasets. 
    more » « less